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Abstract

We classify integrable third-order equations in 2 + 1 dimensions which
generalize the examples of Kadomtsev–Petviashvili, Veselov–Novikov and
Harry Dym equations. Our approach is based on the observation that
dispersionless limits of integrable systems in 2 + 1 dimensions possess
infinitely many multi-phase solutions coming from the so-called hydrodynamic
reductions. In this paper, we adopt a novel perturbative approach to the
classification problem. Based on the method of hydrodynamic reductions, we
first classify integrable quasilinear systems which may (potentially) occur as
dispersionless limits of soliton equations in 2 + 1 dimensions. To reconstruct
dispersive deformations, we require that all hydrodynamic reductions of the
dispersionless limit be inherited by the corresponding dispersive counterpart.
This procedure leads to a complete list of integrable third-order equations,
some of which are apparently new.

PACS numbers: 02.30.Ik, 02.30.Jr
Mathematics Subject Classification: 35L40, 35Q51, 35Q58, 37K10, 37K55

1. Introduction

The classification of integrable systems has been a topic of active research from the very
beginning of soliton theory. In 1 + 1 dimensions, this resulted in extensive lists of integrable
equations within particularly important subclasses [24], which were obtained by means of the
symmetry approach. Although this technique generalizes to 2 + 1 dimensions, one encounters
additional difficulties due to the appearance of non-local variables [25]. A way to bypass
the problem of non-locality, known as the perturbative symmetry approach [26], provides an
efficient way to classify soliton equations in 2 + 1 dimensions. In this framework, one starts
with a linear equation having degenerate dispersion law [38], and reconstructs the allowed
nonlinearity. However, few classification results have been obtained so far. In fact, most of the
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(2 + 1)-dimensional examples known to date were derived by postulating a special structure
of the corresponding Lax pair; see e.g. [21, 34].

In this paper, we adopt a novel approach to the problem of classification of scalar third-
order soliton equations in 2 + 1 dimensions with the ‘simplest’ possible non-localities,

ut = F(u,w,Du,Dw)

and

ut = F(u, v,w,Du,Dv,Dw),

respectively. Here u(x, y, t) is a scalar field, and the non-local variables v(x, y, t) and
w(x, y, t) are defined via wx = uy and vy = ux , equivalently, w = D−1

x Dyu, v = D−1
y Dxu.

The symbols Du,Dv,Dw denote the collection of all partial derivatives of u, v,w with respect
to x and y up to the third order. In fact, it is sufficient to allow only y-derivatives of w and x-
derivatives of v. We will refer to the above equations as the ‘non-symmetric’ and ‘symmetric’
cases, respectively. We assume that in both cases the dependence of the right-hand side F on
the derivatives of u and w (resp., u, v,w) is polynomial, where the coefficients are allowed to
be arbitrary functions of u and w (resp., u, v,w). Explicitly, in the non-symmetric case we
have

ut = ϕux + ψuy + ηwy + ε(· · ·) + ε2(· · ·), wx = uy, (1)

where ϕ,ψ, η are the functions of u and w, while the terms at ε and ε2 are assumed to
be homogeneous differential polynomials of orders 2 and 3 in the derivatives of u and w,
whose coefficients can be arbitrary functions of u and w. We use the following weighting
scheme: u and w are assumed to have order 0, their derivatives ux, uy,wx,wy are of order 1,
the expressions uxx, uxy, uyy, wyy, u

2
x, uxuy, u

2
y, uxwy, uywy,w

2
y are of order 2, etc. Thus,

the term at ε is a linear combination of the ten second order expressions whose coefficients
can be arbitrary functions of u and w. The most familiar example within class (1) is the
Kadomtsev–Petviashvili (KP) equation,

ut = uux + wy + ε2uxxx, wx = uy.

Similarly, in the symmetric case we consider equations of the form

ut = ϕux + ψuy + ηwy + τvx + ε(· · ·) + ε2(· · ·), wx = uy, vy = ux, (2)

where ϕ,ψ, η, τ are the functions of u, v and w. A canonical example of the form (2) is the
Veselov–Novikov (VN) equation,

ut = (uv)x + (uw)y + ε2(uxxx + uyyy), wx = uy, vy = ux.

In section 2, we bring together other known examples of the form (1) and (2) which include
the KP, VN, Harry Dym equations and their modifications.

Our approach to the classification problem is based on the following key observations.

• Dispersionless limits of integrable soliton equations in 2 + 1 dimensions possess infinitely
many hydrodynamic reductions.

In particular, dispersionless limits of equations (1) and (2),

ut = ϕux + ψuy + ηwy, wx = uy (3)

and

ut = ϕux + ψuy + ηwy + τvx, wx = uy, vy = ux, (4)

should possess infinitely many hydrodynamic reductions and, thus, must be integrable in the
sense of [10]. It was observed in [10] that the method of hydrodynamic reductions provides an

2
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efficient classification criterion. Thus, as a first step, in section 3 we classify integrable first-
order equations of the form (3) and (4) which may (potentially) occur as dispersionless limits
of integrable equations of the form (1) and (2). We emphasize that the requirement of being
a dispersionless limit of a third-order soliton equation imposes further severe constraints, so
that very few particular cases obtained in section 3 do actually survive.

Given an integrable dispersionless equation, one needs to reconstruct dispersive
deformations. In 1 + 1 dimensions, this problem has been a subject of extensive research
in [7–9, 22]; see also [1]. In 2 + 1 dimensions, the reconstruction procedure is based on the
following key observation [14]:

• Hydrodynamic reductions of dispersionless limits of integrable soliton equations can be
deformed into reductions of the corresponding dispersive counterparts (strictly speaking,
this is only true if the dispersionless limit is linearly non-degenerate; see section 4).
Furthermore, the requirement of the inheritance of all hydrodynamic reductions allows
one to efficiently reconstruct dispersive terms in 2 + 1 dimensions.

This suggests the following alternative definition of the integrability:
A (2 + 1)-dimensional system is said to be integrable if all hydrodynamic reductions of

its dispersionless limit (which is assumed to be linearly non-degenerate) can be deformed into
reductions of the corresponding dispersive counterpart.

Although this property is satisfied for all known integrable equations whose dispersionless
limit is not totally linearly degenerate, it would be important to formulate more precise
statements about the equivalence of our definition with more ‘conventional’ approaches to the
integrability.

The procedure of the reconstruction of dispersive terms is thoroughly illustrated in
section 4, where we examine case-by-case all integrable dispersionless limits from section 3.
Our calculations result in a complete list of integrable (2 + 1)-dimensional equations, some of
which are apparently new. It is important to emphasize that, although our approach is based
on the requirement of the inheritance of hydrodynamic reductions, all examples from the final
list do actually possess conventional Lax pairs. Altogether, we found three new equations.
One of them is

ut = (βw + β2u2)ux − 3βuuy + wy + ε2[B3(u) − βuxB
2(u)], wx = uy, (5)

where B = βuDx − Dy, β = const. It possesses the Lax pair

ψxy = βuψxx +
1

3ε2
ψ, ψt = ε2β3u3ψxxx − ε2ψyyy + 3ε2β2uuyψxx + βwψx.

The second example is

ut = 4
3β2u3ux + (w − 3βu2)uy + uwy + ε2[B3(u) − βuxB

2(u)], wx = uy, (6)

where again B = βuDx − Dy, β = const. The corresponding Lax pair is

ψxy = βuψxx +
1

3ε2
uψ,

ψt = ε2β3u3ψxxx − ε2ψyyy + 3ε2β2uuyψxx +
β2

3
u3ψx + wψy + βuuyψ.

We point out that similar Lax operators appeared in the context of the (2 + 1)-dimensional
Camassa–Holm equation [39]. Our last example is a deformation of the Harry Dym (HD)
equation,

ut = δ

u3
ux − 2wuy + uwy − ε2

u

(
1

u

)
xxx

, wx = uy, (7)

3
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for δ = 0 it reduces to the standard HD equation (example 9 of section 2.1). It has the Lax
pair Lt = [A,L], where

L = ε2

u2
D2

x +
ε√
3
Dy +

δ

4u2
,

A = 4ε2

u3
D3

x +

(
−6ε2ux

u4
+

2
√

3εw

u2

)
D2

x +
δ

u3
Dx +

(
−3δux

2u4
+

√
3δw

2εu2

)
.

All three examples belong to the non-symmetric case. In the symmetric case, we have no new
equations apart from those listed in section 2.2. This leads to the following main result.

Theorem 1. Equations (5)–(7) along with the known examples of KP, non-symmetric VN, HD
equations and their modifications provide a complete list of integrable equations of the form
(1) with η �= 0 whose dispersionless limit is linearly non-degenerate:

KP equation ut = uux + wy + ε2uxxx,

mKP equation ut = (w − u2/2)ux + wy + ε2uxxx,

Gardner equation ut =
(

βw − β2

2
u2 + δu

)
ux + wy + ε2uxxx,

VN equation ut = (uw)y + ε2uyyy,

mVN equation ut = (uw)y + ε2

(
uyy − 3

4

u2
y

u

)
y

,

HD equation ut = −2wuy + uwy−ε2

u

(
1

u

)
xxx

,

deformed HD equation ut = δ

u3
ux − 2wuy + uwy−ε2

u

(
1

u

)
xxx

,

Equation (5) ut = (βw + β2u2)ux − 3βuuy + wy + ε2 [
B3(u) − βuxB

2(u)
]
,

Equation (6) ut = 4

3
β2u3ux + (w − 3βu2)uy + uwy + ε2 [

B3(u) − βuxB
2(u)

]
.

In the symmetric case, there exist only two examples of integrable equations of the form (2)
with η, τ �= 0:

VN equation ut = (uv)x + (uw)y + ε2uxxx + ε2uyyy,

mVN equation ut = (uv)x + (uw)y + ε2

(
uxx − 3

4

u2
x

u

)
x

+ ε2

(
uyy − 3

4

u2
y

u

)
y

.

The proof is summarized in section 4. Under the substitution w = 0, uy = 0, equations (5)
and (6) reduce to

ut = ε2β3 (
u3uxxx + 3u2uxuxx

)
+ β2u2ux

and

ut = ε2β3 (
u3uxxx + 3u2uxuxx

)
+ 4

3β2u3ux,

respectively. In this form, they have appeared in [35]; see also [24] and references therein.
It was pointed out (see, e.g., [18, 24, 29]) that there exist differential substitutions bringing
these equations to a constant separant form. It would be interesting to find out whether
equations (5)–(7) are related to any of the known soliton hierarchies: the main problem here

4
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is that the above differential substitutions do not extend to 2 + 1 dimensions in any obvious
way.

Remark 1. The examples of VN and mVN equations show that different (2 + 1)-dimensional
equations may have one and the same dispersionless limit.

Remark 2. Our approach to the classification problem does not apply to non-symmetric
equations with η = 0 (or symmetric equations with η = τ = 0). As we explain in
section 3, these conditions are equivalent to the reducibility of the dispersion relations of
the corresponding systems (3), (4). A familiar example within this class is the so-called
‘breaking soliton’ equation,

ut = 2wux + 4uuy − ε2uxxy, wx = uy,

see, e.g., [3]. Here ϕ = 2w,ψ = 4u, η = 0. Equations of this type are not amenable to the
method of hydrodynamic reductions, and require an alternative approach.

2. Known examples

2.1. Non-symmetric case

Here, we bring together known examples of soliton equations whose dispersionless limit is
of the form (3). The relation wx = uy will be automatically assumed whenever w appears
explicitly in the equation. Examples 1–6 list third-order equations. Examples 7–10 correspond
to equations of order 5 or differential-difference equations.

Example 1. The KP equation,

ut = uux + wy + ε2uxxx, (8)

arises in mathematical physics as a two-dimensional generalization of the KdV equation. Its
dispersionless limit (the dKP equation),

ut = uux + wy, (9)

also known as the Khokhlov–Zabolotskaya equation [36], is of interest in its own, playing
important role in nonlinear acoustics, gas dynamics and differential geometry.

Example 2. The modified KP (mKP) equation,

ut = (w − u2/2)ux + wy + ε2uxxx, (10)

has the dispersionless limit

ut = (w − u2/2)ux + wy. (11)

Example 3. The (2 + 1)-dimensional version of the Gardner equation is of the form [21],

ut =
(

βw − β2

2
u2 + δu

)
ux + wy + ε2uxxx, (12)

which reduces to the KP or mKP equations upon setting β = 0 or δ = 0, respectively. Its
dispersionless limit has the form

ut =
(

βw − β2

2
u2 + δu

)
ux + wy. (13)

5
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Example 4. The non-symmetric version of the VN equation [4, 28, 33],

ut = (uw)y + ε2uyyy, (14)

has the dispersionless limit

ut = (uw)y. (15)

Example 5. The non-symmetric version of the mVN equation [2],

ut = (uw)y + ε2

(
uyy − 3

4

u2
y

u

)
y

, (16)

has the same dispersionless limit as in the previous example,

ut = (uw)y. (17)

Example 6. The HD equation [21],

ut = −2wuy + uwy − ε2

u

(
1

u

)
xxx

, (18)

(set ũ = 1/u to obtain the equation from [21]), has the dispersionless limit

ut = −2wuy + uwy. (19)

Example 7. The fifth-order version of the HD equation is

ut = −3wuy +uwy − ε2

u4

(
u2uxxy −3u(uxuy)x + 6u2

xuy

)
+

ε4

u2

(
1

u2

)
xxxxx

; (20)

see [21]. Its dispersionless limit has the form

ut = −3wuy + uwy. (21)

Example 8. The Toda lattice is a system of two differential-difference equations

εut = u(w(y) − w(y − ε)),

εwx = u(y + ε) − u(y)
(22)

or

ut/u = wy − ε

2
wyy +

ε2

6
wyyy + · · · + (−1)n+1 εn

n!
wny + · · · ,

wx = uy +
ε

2
uyy +

ε2

6
uyyy + · · · +

εn

n!
uny + · · · .

(23)

Its dispersionless limit is

ut = uwy. (24)

Example 9. The non-local Toda lattice equation is

εσxt = e
σ(x+ε,y+ε)−σ

ε − e
σ−σ(x−ε,y−ε)

ε ; (25)

see [32]. Its dispersionless limit is

σxt = eσx+σy (σxx + 2σxy + σyy), (26)

or, setting σx = u, σy = w,

ut = eu+w(ux + 2uy + wy).

6
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Example 10. The BKP and CKP equations are of the forms

ut − 5(u2 + w)ux − 5uwx + 5wy + ε2(uuxxx + wxxx + uxxx) − ε4

25
uxxxxx = 0 (27)

and

ut − 5(u2 + w)ux − 5uwx + 5wy + ε2

(
uuxxx + wxxx +

5

2
uxxx

)
− ε4

25
uxxxxx = 0, (28)

respectively [21]. Their dispersionless limits coincide:

ut = 5(u2 + w)ux + 5uuy − 5wy. (29)

2.2. Symmetric case

Here, we list known examples of the form (2). The relations vy = ux and wx = uy will
be automatically assumed whenever v and w appear explicitly in the equation. It is quite
remarkable that the ‘symmetric’ list is very restrictive and contains only two examples.

Example 1. The VN equation,

ut = (uv)x + (uw)y + ε2uxxx + ε2uyyy, (30)

was introduced in [28, 33]. It has the dispersionless limit

ut = (uv)x + (uw)y. (31)

Example 2. The mVN equation,

ut = (uv)x + (uw)y + ε2

(
uxx − 3

4

u2
x

u

)
x

+ ε2

(
uyy − 3

4

u2
y

u

)
y

, (32)

was first introduced in [2] (in a somewhat different form). It has the same dispersionless limit
as in the previous example,

ut = (uv)x + (uw)y. (33)

3. Classification of integrable dispersionless limits

In this section, we classify integrable dispersionless equations of the form (3) and (4) which
may potentially occur as dispersionless limits of integrable soliton equations of the form (1)
and (2), respectively. The integrability conditions are derived on the basis of the method of
hydrodynamic reductions. For the convenience of the reader, we briefly recall the main steps
of this construction. As proposed in [10], the method of hydrodynamic reductions applies to
quasilinear equations of the following general form:

A(u)ut + B(u)ux + C(u)uy = 0; (34)

here u = (u1, . . . , um)t is an m-component column vector of the dependent variables and
A,B,C are m × m matrices. The method of hydrodynamic reductions consists of seeking
multi-phase solutions in the form

u = u(R1, . . . , RN), (35)

where the ‘phases’ Ri(x, y, t) are required to satisfy a pair of consistent equations of
hydrodynamic type,

Ri
y = μi(R)Ri

x, Ri
t = λi(R)Ri

x.

7
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We recall that the consistency conditions, Ri
yt = Ri

ty , imply the following restrictions for the
characteristic speeds μi and λi :

∂jμ
i

μj − μi
= ∂jλ

i

λj − λi
,

i �= j, ∂i = ∂/∂Ri ; see [31]. The substitution of the ansatz (35) into (34) leads to a
complicated over-determined system of PDEs for functions u(R), μi(R) and λi(R) whose
coefficients depend on the matrix elements of A,B,C, and their derivatives. In particular, the
characteristic speeds μi(R) and λi(R) satisfy an algebraic relation det(λA + B + μC) = 0
which is nothing but the dispersion relation of the system (34). We will assume that the
dispersion relation defines an irreducible algebraic curve of degree m.

Definition. [10]. System (34) is said to be integrable if, for any number of phases N, it
possesses infinitely many N-phase solutions parametrized by 2N arbitrary functions of one
variable.

The requirement of the existence of such solutions imposes strong constraints on the matrices
A,B,C, which can be effectively computed. Although these constraints are quite formidable
in general, there exists a simple necessary condition for the integrability which can be expressed
in an invariant differential geometric form as follows. Let us first introduce the m × m matrix

V = (αA + βB + γC)−1(α̃A + β̃B + γ̃ C),

where α, β, γ and α̃, β̃, γ̃ are arbitrary constants. Given a (1, 1)-tensor V = [
vi

j

]
, let us

introduce the following objects: Nijenhuis tensor

N i
jk = v

p

j ∂upvi
k − v

p

k ∂upvi
j − vi

p

(
∂uj v

p

k − ∂ukv
p

j

)
,

Haantjes tensor

Hi
jk = N i

prv
p

j vr
k − N p

jrv
i
pvr

k − N p

rkv
i
pvr

j + N p

jkv
i
rv

r
p.

One has the following result.

Theorem 2. [12]. The vanishing of the Haantjes tensor is a necessary condition for the
integrability of the system (34).

Since the Haantjes tensor can be obtained using computer algebra, one gets an efficient
integrability test (note that all components of the Haantjes tensor have to vanish for any values
of the constants α, β, γ and α̃, β̃, γ̃ ). These necessary conditions are very strong indeed, and
in many cases turn out to be sufficient. We point out that, for m = 2, the Haantjes tensor
vanishes identically and does not produce any non-trivial integrability conditions. In this
case, one proceeds as follows: let us multiply (34) by A−1, and diagonalize B (this is always
possible in the 2-component case). Thus, without any loss of generality one can assume

A =
(

1 0
0 1

)
, B =

(
a 0
0 b

)
, C =

(
p q

r s

)
.

In this particular normalization, the integrability conditions for 2 × 2 systems were obtained
in [11]. These conditions constitute a system of second-order constraints for coefficients
a, b, p, q, r, s which can easily be tested. Let us now apply this approach to the classification
of integrable systems of the form (3) and (4).

8
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3.1. Non-symmetric dispersionless limits

Given an equation of the form (3),

ut = ϕux + ψuy + ηwy, wx = uy,

let us first rewrite it in the matrix form (34) as follows:(−1/ϕ 0
0 0

) (
u

w

)
t

+

(
1 0
0 1

) (
u

w

)
x

+

(
ψ/ϕ η/ϕ

−1 0

) (
u

w

)
y

= 0.

This system is now in the form as studied in [11]. The integrability conditions reduce to a
system of second-order partial differential equations for coefficients ϕ,ψ and η, which can be
derived from the general integrability conditions for 2 × 2 systems of hydrodynamic type in
2 + 1 dimensions as obtained in [11]:

ϕuu = −ϕ2
w + ψuϕw − 2ψwϕu

η
,

ϕuw = ηwϕu

η
,

ϕww = ηwϕw

η
,

ψuu = −ϕwψw + ψuψw − 2ϕwηu + 2ηwϕu

η
,

ψuw = ηwψu

η
,

ψww = ηwψw

η
,

ηuu = −ηw (ϕw − ψu)

η
,

ηuw = ηwηu

η
,

ηww = η2
w

η
;

(36)

we assume η �= 0: this is equivalent to the requirement that the dispersion relation of the
system (3) define an irreducible conic (indeed, the condition det(λA + B + μC) = 0 is
equivalent to λ = ϕ + ψμ + ημ2). We have verified that the system (36) is in involution, and
all dispersionless limits appearing in section 2.1 indeed satisfy these integrability conditions.
Equations (36) are straightforward to solve. First of all, the equations for η imply that, up
to translations and rescalings, η = 1, η = u or η = ewh(u). We will consider all three
possibilities case-by-case below. Note that ϕ and ψ are defined up to additive constants which
can always be set equal to zero via the Galilean transformations of the initial equation (3).
Moreover, the system (36) is form-invariant under transformations of the form

ϕ̃ = ϕ − sψ + s2η, ψ̃ = ψ − 2sη, η̃ = η, ũ = u, w̃ = w + su, (37)

s = const, which correspond to the following transformations preserving the structure of
equations (3):

x̃ = x − sy, ỹ = y, ũ = u, w̃ = w + su.

All our classification results are formulated modulo this equivalence.

9
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Case 1: η = 1. Then the remaining equations imply ψ = αw + f (u), ϕ = βw + g(u), where
f and g satisfy the linear ODEs

f ′′ = α(f ′ − β), g′′ = 2αg′ − βf ′ − β2.

The subcase α = 0 leads to polynomial solutions of the form

ψ = γ u, ϕ = βw − 1
2β(β + γ )u2 + δu. (38)

Up to equivalence transformations, the case α �= 0 leads to exponential solutions,

ψ = αw + γ eαu, ϕ = δe2αu; (39)

where α, β, γ, δ are arbitrary constants.

Case 2: η = u. Then the remaining equations imply ψ = αw + f (u), ϕ = βw + g(u), where
f and g satisfy the linear ODEs

uf ′′ = α(f ′ − β) − 2β, ug′′ = 2αg′ − βf ′ − β2.

The case α /∈ {0,−1,−1/2} leads to power-like solutions of the form

ψ = αw + γ uα+1, ϕ = δu2α+1. (40)

The subcase α = 0 leads to logarithmic solutions,

ψ = −2βu ln u − βu, ϕ = βw + β2u ln2 u + δu. (41)

The subcase α = −1 gives

ψ = −w + γ ln u, ϕ = δ/u. (42)

Finally, the subcase α = −1/2 gives

ψ = − 1
2w + γ

√
u, ϕ = δ ln u. (43)

Case 3: η = ewh(u). Then the remaining equations imply ψ = ewf (u), ϕ = ewg(u), where
f, g and h satisfy the nonlinear system of ODEs

h′′ = f ′ − g, g′′h = 2fg′ − gf ′ − g2, f ′′h = 2hg′ − 2gh′ + ff ′ − fg.

Setting g = p′, f = h′ + p, we can rewrite this system as a pair of third-order ODEs

hp′′′ = 2h′p′′ − p′h′′ + 2pp′′ − 2p′2, hh′′′ = h′h′′ − 2h′p′ + hp′′ + ph′′,

which, up to a change of sign p → −p, identically coincides with a system arising in the
classification of integrable conservative hydrodynamic chains (subcase I1 of section 3.1 in
[13]). Setting p = h′, the second equation will be satisfied identically, while the first one
implies a fourth-order ODE for h, h′′′′h + 3(h′′)2 − 4h′h′′′ = 0, whose general solution is
an elliptic sigma-function: h = σ(u), here (ln σ)′′ = −℘, (℘ ′)2 = 4℘3 − c (note that
g2 = 0, g3 = c). Thus, as a particular case we have

h = σ(u), f = 2σ ′(u), g = σ ′′(u).

Another subclass of solutions can be obtained by setting p = ch which implies

h′′′h − h′′h′ = 2c(h′′h − h′2)

with the general solution

h = αe(c+γ )u + βe(c−γ )u;
here α, β, γ are arbitrary constants. Although the structure of the general solution is quite
complicated, one can show that Case 3 cannot arise as a dispersionless limit of an integrable
third-order soliton equation.
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3.2. Symmetric dispersionless limits

In this section, we consider first-order equations of the form (4),

ut = ϕux + ψuy + ηwy + τvx, wx = uy, vy = ux,

where the coefficients ϕ,ψ, η, τ are the functions of u, v,w. We assume that the dispersion
relation of this system defines an irreducible cubic, which is equivalent to the requirement
η �= 0 and τ �= 0 (indeed, the dispersion relation has the form λμ = τ + ϕμ + ψμ2 + ημ3).
In this case, the integrability conditions reduce to a system of first-order partial differential
equations for coefficients ϕ,ψ, η and τ which can be obtained from the requirement of the
vanishing of the Haantjes tensor [12] as outlined in section 3. The details are as follows: first
we rewrite equation (4) in the matrix form,

Aut + Bux + Cuy = 0,

where u is a 3-component column vector u = (u, v,w)t , and A,B,C are 3 × 3 matrices,

A =
⎛
⎝−1 0 0

0 0 0
0 0 0

⎞
⎠ , B =

⎛
⎝ ϕ τ 0

0 0 1
−1 0 0

⎞
⎠ , C =

⎛
⎝ ψ 0 η

−1 0 0
0 1 0

⎞
⎠ .

The necessary conditions for integrability can be obtained from the requirement of the
vanishing of the Haantjes tensor of the following family of matrices:

(αA + βB + γC)−1(α̃A + β̃B + γ̃ C).

In fact, it is sufficient to require the vanishing of the Haantjes tensor for a 2-parameter family
(αA+B)−1(α̃A+C). This condition turns out to be very restrictive, and leads to the following
constraints for coefficients ϕ,ψ, η and τ :

τu = ϕv, ηu = ψw,

τv = τ

η
ψu, ηv = 0,

τw = 0, ηw = η

τ
ϕu,

ψv = ϕw = 0, τψw = ηϕv.

The integration of this system is straightforward. First of all, one can set ψ = fu, η = fw and
ϕ = gu, τ = gv where f = f (u,w) and g = g(u, v). The separation of variables leads to the
relations

fw = a(w)k(u), gv = b(v)k(u),

fuu = βa(w)k(u), guu = αb(v)k(u),

where the functions a(w), b(v) and k(u) satisfy the ODEs a′ = αa, b′ = βb and k′′ = αβk;
here α and β are arbitrary constants. Up to elementary translations, rescalings and Galilean
transformations, this leads to the following subcases:

Case 1. α = β = 0. This leads to equations of the form

ut = ν(uv)x + μ(uw)y,

where μ, ν are arbitrary constants. These correspond to the Veselov–Novikov cases from
section 2.2.

Case 2. α �= 0, β = 0. This leads to equations of the form

ut = ν(uv + αu3/6)x + μ(eαwu)y

11
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and

ut = ν(v + αu2/2)x + μ(eαw)y,

where μ, ν, α are arbitrary constants.

Case 3. α �= 0, β �= 0. This leads to equations of the form

ut = ν(eβvk(u))x + μ(eαwk(u))y,

where ν, μ, α, β are arbitrary constants, and k′′ = αβk.

4. Classification of integrable third-order dispersive equations

Given an integrable dispersionless limit, one has to reconstruct dispersive terms. This can be
done by requiring that all hydrodynamic reductions of the dispersionless system be inherited
by its dispersive counterpart. We will illustrate this procedure using the KP equation,

ut = uux + wy + ε2uxxx, wx = uy.

Its dispersionless limit, the dKP equation,

ut = uux + wy, wx = uy,

possesses one-phase solutions of the form u = R,w = w(R) where the phase R(x, y, t)

satisfies a pair of Hopf-type equations

Ry = μRx, Rt = (μ2 + R)Rx; (44)

here μ(R) is an arbitrary function, and w′ = μ. Equivalently, one can say that equations (44)
constitute a 1-component hydrodynamic reduction of the dKP equation. Although the dKP
equation is known to possess infinitely many N-component reductions for arbitrary N [15–
17, 19], 1-component reductions will be sufficient for our purposes. The main observation of
[14] is that all 1-component reductions (44) can be deformed into reductions of the full KP
equation by adding appropriate dispersive terms which are polynomial in the x-derivatives of
R. Explicitly, one has the following formulae for the deformed 1-phase solutions:

u = R, w = w(R) + ε2(μ′Rxx + 1
2 (μ′′ − (μ′)3)R2

x

)
+ O(ε4), (45)

note that one can always assume that u remains undeformed modulo the Miura group [7]. The
deformed equations (44) take the form

Ry = μRx + ε2(μ′Rxx + 1
2 (μ′′ − (μ′)3)R2

x

)
x

+ O(ε4),

Rt = (μ2 + R)Rx + ε2((2μμ′ + 1)Rxx + (μμ′′ − μ(μ′)3 + (μ′)2/2)R2
x

)
x

+ O(ε4).
(46)

In other words, the KP equation can be ‘decoupled’ into a pair of (1 + 1)-dimensional
equations (46) in infinitely many ways, indeed, μ(R) is an arbitrary function. The series
in (45) and (46) contain only even powers of ε, and do not terminate in general.

Conversely, the requirement of the inheritance of all 1-component reductions allows one
to reconstruct dispersive terms: given the dKP equation, let us look for a third-order dispersive
extension in the form

ut = uux + wy + ε(· · ·) + ε2(· · ·), wx = uy, (47)

where the terms at ε and ε2 are homogeneous differential polynomials in the x- and y-
derivatives of u and w of orders 2 and 3, respectively, whose coefficients are allowed to
be arbitrary functions of u and w. We require that all 1-component reductions (44) can be
deformed accordingly, so that we have the following analogues of equations (45) and (46),

u = R, w = w(R) + ε(· · ·) + ε2(· · ·) + O(ε3) (48)

12
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and

Ry = μRx + ε(· · ·) + ε2(· · ·) + O(ε3),

Rt = (μ2 + R)Rx + ε(· · ·) + ε2(· · ·) + O(ε3),
(49)

respectively. In equations (48) and (49), dots denote terms which are polynomial in the
derivatives of R. Substituting equations (48) into (47) and using (49) along with the consistency
conditions Rty = Ryt , one arrives at a complicated set of relations allowing one to uniquely
reconstruct dispersive terms in (47): not surprisingly, we obtain that all terms at ε vanish,
while the terms at ε2 result in the familiar KP equation. Moreover, one only needs to perform
calculations up to the order ε4 to arrive at this result! It is important to emphasize that the
above procedure is required to work for arbitrary μ: whenever one obtains a differential
polynomial in μ which has to vanish due to the consistency conditions, all its coefficients have
to be set equal to zero independently. Another observation is that the reconstruction procedure
does not necessarily lead to a unique dispersive extension as in the dKP case: one and the
same dispersionless system may possess essentially non-equivalent dispersive extensions. In
most of the cases, one can get the necessary classification results working with 1-component
reductions only. There is, however, one particular situation where 1-component reductions
are not sufficient. This is explained in the remark below.

Remark 1. Let us consider the dKP equation,

ut = uux + wy, wx = uy;
its 1-component reductions (44) can be shown to satisfy a pair of additional first-order
constraints,

u2
y − uxwy = 0, (wt − uuy)ux − uywy = 0.

Conversely, any solution satisfying these constraints comes from 1-component reductions.
Similarly, one can show that 2-component reductions of dKP are characterized by a pair of
second-order differential constraints, etc. Let us introduce an extension of dKP in the form

ut = uux + wy + ε
(
u2

y − uxwy

)
, wx = uy;

by construction, it inherits all undeformed 1-component reductions: the ε-term vanishes on
1-component reductions identically. This extension is, however, not integrable: one can show
that it is not consistent with the requirement of the inheritance of N-component reductions
for N � 2. Thus, in what follows we eliminate deformations which inherit undeformed
1-component reductions.

In general, we proceed as follows. For definiteness, we will outline the algorithm for
integrable dispersionless equations of the form (3),

ut = ϕux + ψuy + ηwy, wx = uy.

Its 1-component reductions are of the form u = R,w = w(R) where R(x, y, t) satisfies a
pair of Hopf-type equations

Ry = μRx, Rt = (ϕ + ψμ + ημ2)Rx;
here μ(R) is an arbitrary function, and w′ = μ. We seek a third-order dispersive deformation
of equation (3) in the form

ut = ϕux + ψuy + ηwy + ε(· · ·) + ε2(· · ·), wx = uy,

and postulate that 1-phase solutions can be deformed accordingly,

u = R, w = w(R) + ε(· · ·) + ε2(· · ·) + O(ε3),

13
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where

Ry = μRx + ε(· · ·) + ε2(· · ·) + O(ε3),

Rt = (ϕ + ψμ + ημ2)Rx + ε(· · ·) + ε2(· · ·) + O(ε3).

Proceeding as outlined above we reconstruct possible dispersive terms. In fact, one can
start with arbitrary ϕ,ψ, η: our procedure will eventually recover the constraints obtained in
section 3. However, using the classification results of section 3 from the very beginning
considerably simplifies the calculations.

Remark 2. We point out that the formulae for dispersive deformations contain the expression

ηwμ3 + (ψw + ηu)μ
2 + (ϕw + ψu)μ + ϕu

in the denominator. Since μ is assumed to be arbitrary, this expression is nonzero unless
ϕ,ψ, η satisfy the relations

ηw = 0, ψw + ηu = 0, ϕw + ψu = 0, ϕu = 0. (50)

These relations characterize the so-called totally linearly degenerate systems, which are known
to be quite special from the point of view of the global existence of classical solutions: it
was conjectured in [23] that smooth initial data for totally linearly degenerate systems do not
break down in finite time. Modulo the integrability conditions (36), the relations (50) lead to
equations of the form

ut = α(wux − uwx) + β(wuy − uwy) + γwy, wx = uy,

which have been discussed before in the context of the so-called ‘universal hierarchy’ [27].
For totally linearly degenerate systems (in particular, for linear systems), the procedure based
on deformations of hydrodynamic reductions does not work, as the following simple example
shows. Let us consider the KP equation,

ut = αuux + wy + ε2uxxx, wx = uy,

where we introduced a parameter α: for α = 0 the equation becomes linear. Looking for
deformed 1-phase solutions in the form

u = R, w = w(R) + ε2(· · ·) + O(ε4),

where

Ry = μRx + ε2(· · ·) + O(ε4), Rt = (μ2 + αR)Rx + ε2(· · ·) + O(ε4),

one can obtain the relation αb(R) − μ′ = 0, where b(R) is the coefficient at Rxxx in the
ε2-term in the expansion of Ry . For α = 0, one cannot solve for b(R), and obtains a relation
μ′ = 0. Thus, the linear equation ut = wy + ε2uxxx does not inherit generic hydrodynamic
reductions of its dispersionless limit. Another example of this kind is provided by the potential
KP equation,

ut = wy +
ε

2
u2

x + ε2uxxx. (51)

One can show that this equation does not inherit hydrodynamic reductions of its dispersionless
limit. However, some particular reductions can be inherited, for instance, those with μ = const.

Thus, we exclude totally linearly degenerate systems from the further considerations:
dispersive deformations of such systems do not inherit hydrodynamic reductions, and require
a different approach.
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4.1. Non-symmetric dispersive equations

In this section, we summarize the classification results for integrable non-symmetric third-
order equations (1),

ut = ϕux + ψuy + ηwy + ε(· · ·) + ε2(· · ·), wx = uy,

which are obtained by adding dispersive terms to integrable dispersionless candidates from
section 3.1. Thus, we follow the classification of section 3.1.

Case 1: We have verified that the exponential solutions (39) do not survive, so that all
non-trivial examples come from the polynomial case (38),

η = 1, ψ = γ u, ϕ = βw − 1
2β(β + γ )u2 + δu.

We point out that the corresponding dispersionless system possesses the Lax pair

Sy = βuSx + r(Sx), St = (
βw + 1

2β(β + γ )u2)Sx + βuSxr
′(Sx) + z(Sx), (52)

where

r(Sx) = − δ

β + γ
Sx + S

2β+γ

β

x , z′ = r ′2.

Lax pairs of this kind, consisting of two compatible Hamilton–Jacobi type equations, were
first introduced by Zakharov in [37]. A detailed analysis of dispersive deformations leads to
the two branches: γ = 0, which corresponds to the (2 + 1)-dimensional Gardner equation
(example 3 of section 2.1), and the case γ = −3β. In the latter case, one can set δ = 0, which
leads to the apparently new equation (5),

ut = (βw + β2u2)ux − 3βuuy + wy + ε2 [
B3(u) − βB2(u)ux

]
,

where B = βuDx − Dy . The dispersionless limit of this equation possesses the Lax pair

SxSy = βuS2
x + 1

3 , St = β3u3S3
x − S3

y + βwSx, (53)

which follows from (52) when γ = −3β. Its dispersive extension is

ψxy = βuψxx +
1

3ε2
ψ, ψt = β3ε2u3ψxxx − ε2ψyyy + 3β2ε2uuyψxx + βwψx. (54)

This is case (5) from section 1.

Case 2: One can prove that none of the logarithmic cases (41), (42) and (43) survive, so that
all non-trivial examples come from the power case (40),

η = u, ψ = αw + γ uα+1, ϕ = δu2α+1.

Further analysis leads to the following branches.

Subcase 2.1: α = 1. In this case

η = u, ψ = w + γ u2, ϕ = δu3.

The corresponding dispersionless Lax pair is of the form

Sy = ua, St = uwa + 1
3a(γ + a′)u3, (55)

where the function a(Sx) solves the ODE aa′′ − 2a′2 = 3δ + 2γ a′. The further analysis gives
either γ = δ = 0, which leads to the non-symmetric VN cases (examples 4 and 5 of section
2.1, in this case one can take a = 1/Sx), or δ = 4

27γ 2, in which case one arrives at the
apparently new dispersive equation (6),

ut = 4
27γ 2u3ux + (w + γ u2)uy + uwy + ε2[B3(u) − 1

3γ uxB
2(u)

]
,
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where B = 1
3γ uDx +Dy . This corresponds to the choice a = 1/Sx − γ

3 Sx in the dispersionless
Lax pair (55), which gives

SxSy = −γ

3
uS2

x − u

3
, St = γ 3

27
u3S3

x + S3
y +

γ 2

27
u3Sx + wSy. (56)

The dispersive extension of this Lax pair is

ψxy = −γ

3
uψxx − 1

3ε2
uψ,

ψt = ε2γ 3

27
u3ψxxx + ε2ψyyy − ε2γ 2

3
uuyψxx +

γ 2

27
u3ψx + wψy − γ

3
uuyψ.

(57)

The transformation γ → 3β, y → −y,w → −w reduces this case to equation (6) from
section 1.

Subcase 2.2: α = −2. In this case, one obtains γ = 0, while δ can be an arbitrary constant.
The corresponding dispersive extension takes the form (7),

ut = δ

u3
ux − 2wuy + uwy − ε2

u

(
1

u

)
xxx

,

for δ = 0 it reduces to the HD equation (example 9 of section 2.1). The dispersionless limit
of this equation possesses the Lax pair

Sy = S2
x + τ

u2
, St = −2w

S2
x + τ

u2
+

4

3

S3
x + τSx

u3
; (58)

here τ = 3δ/4. Its dispersive extension is of the form Lt = [A,L], where

L = ε2

u2
D2

x +
ε√
3
Dy +

δ

4u2
,

A = 4ε2

u3
D3

x +

(
−6ε2ux

u4
+

2
√

3εw

u2

)
D2

x +
δ

u3
Dx +

(
−3δux

2u4
+

√
3δw

2εu2

)
.

(59)

Case 3: One can show that none of the examples from this class possess third-order dispersive
extensions.

4.2. Symmetric dispersive equations

A detailed analysis of dispersive extensions of the form (2),

ut = ϕux + ψuy + ηwy + τvx + ε(· · ·) + ε2(· · ·), wx = uy, vy = ux,

does not give any new examples: everything reduces to the two cases of section 2.2. Note
that both symmetric VN and mVN equations can be viewed as linear combinations of the two
commuting non-symmetric counterparts thereof.

5. Concluding remarks

We have proposed a new approach to the classification of integrable equations in 2 + 1
dimensions based on the concept of hydrodynamic reductions and their dispersive
deformations. It consists of the two steps:

• classification of dispersionless systems which may (potentially) arise as dispersionless
limits of soliton equations. This can be efficiently achieved using the method of
hydrodynamic reductions as outlined in [10];
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• classification of possible dispersive deformations based on the requirement that
hydrodynamic reductions of the dispersionless limit be inherited by the dispersive equation
[14].

This procedure was applied to the classification of third-order soliton equations with ‘simplest’
non-localities. Further research in this direction may include the following topics:

(a) Classification of more general (in particular, higher order) soliton equations/systems
with more complicated structure of non-local terms. Thus, one may allow ‘nested’
non-localities of type w = D−1

x Dyu, v = D−1
x DyF (u,w), etc.

(b) Construction of dispersive deformations via an appropriate quantization of the
corresponding dispersionless Lax pairs [37].

(c) Investigation of the structure of multi-soliton solutions of the new equations (5)–(7) in
the spirit of [5, 6].
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